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Speech	Recognition	System

• Goal
• Converting	speech	to	text

• A	Mathematical	Perspective

or
ŵ = argmax

w
{P(w |Y )}

ŵ = argmax
w

{P(Y |w)P(w)}
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GMM-HMM	Model

• GMM and HMM
• GMM is short for Gaussian Mixture Model, and HMM is
short for Hidden Markov Model.

• Predecessor	of	DNNs
• Before Deep Neural Networks (DNNs), the most commonly
used speech recognition systemswere consistedof GMMs
and HMMs.
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GMM-HMM	Model

• HMM
• HMM	is	used	to	deal	with	the	temporal	variability	of	speech.

• GMM
• GMM	is	used	to	represent	the	relationship	between	HMM	
states	and	the	acoustic	input.
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GMM-HMM	Model

• Features
• The	features	is	typically	represented	by	concatenating	Mel-
frequency	cepstral	coefficients	(MFCCs)	or	perceptual	linear	
predictive	coefficients	(PLPs)	computed	from	the	raw	
waveform	and	their	first- and	second-order	temporal	
differences.
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GMM-HMM	Model

• Shortcoming
• GMM-HMM	models	are	statistically	inefficient	for	modeling	
data	that	lie	on	or	near	a	nonlinear	manifold	in	the	data	
space.
• For	example,	modeling	the	set	of	points	that	lie	very	close	to	
the	surface	of	a	sphere.
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Training	Deep	Neural	Networks

• Deep	Neural	Network	(DNN)
• A	DNN	is	a	feed-forward,	artificial	neural	network	that	has	
more	than	one	layer	of	hidden	units	between	its	inputs	and	
its	outputs.
•With	nonlinear	activation	functions,	DNN	is	able	to	model	an	
arbitrary	nonlinear	function	(projection	from	inputs	to	
outputs).	[*]

[*]	Added	by	the	presenter.
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Training	Deep	Neural	Networks

• Activation	Function	of	the	Output	Units
• The	activation	function	of	the	output	units	is	“softmax”	
function.
• The	mathematical	expression	is	as	follows.

pj =
exp(x j )
exp(xk )

k
∑
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Training	Deep	Neural	Networks

• Objective	Function
•When	using	the	softmax	output	function,	the	natural	
objective	function	(cost	function)	C	is	the	cross-entropy	
between	the	target	probabilities	d	and	the	outputs	of	the	
softmax,	p.
• The	mathematical	expression	is	as	follows.

C = dj log pj
j
∑

13



Training	Deep	Neural	Networks

•Weight	Penalties	and	Early	Stopping
• To	reduce	overfitting,	large	weights	can	be	penalized	in	
proportion	to	their	squared	magnitude,	or	the	learning	can	
simply	be	terminated	at	the	point	which	performance	on	a	
held-out	validation	set	starts	getting	worse.
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Training	Deep	Neural	Networks

• Overfitting	Reduction
• Generally	speaking,	there	are	three	methods.
•Weight	penalties	and	early	stopping	can	reduce	the	
overfitting	but	only	by	removing	much	of	the	modeling	
power.
• Very	large	training	sets	can	reduce	overfitting	but	only	by	
making	training	very	computationally	expensive.
• Generative	Pretraining
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Generative	Pretraining

• Purpose
• The	multiple	layers	of	feature	detectors	(the	result	of	this	
step)	can	be	used	as	a	good	starting	point	for	a	
discriminative	“fine-tuning”	phase	during	which	
backpropagation	through	the	DNN	slightly	adjusts	the	
weights	and	improves	the	performance.
• In	addition,	this	step	can	significantly	reduce	overfitting.
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Generative	Pretraining

• Restricted	Boltzmann	Machine	(RBM)
• RBM	consists	of	a	layer	of	stochastic	binary	“visible”	units	
that	represent	binary	input	data	connected	to	a	layer	of	
stochastic	binary	hidden (latent)	units	that	learn	to	model	
significant	nonindependencies	between	the	visible	units.
• There	are	undirected	connections	between	visible	and	
hidden	units	but	no	visible-visible	or	hidden-hidden	
connections.
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Generative	Pretraining

• Restricted	Boltzmann	Machine	(RBM)	(Cont’d)
• The	framework	of	an	RBM	is	shown	below.

From:	Slides	in	CSE5526	Neural	Networks
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Generative	Pretraining

• Restricted	Boltzmann	Machine	(RBM)	(Cont’d)
• RBM	uses	a	single	set	of	parameters,	W,	to	define	the	joint	
probability	of	a	vector	of	values	of	the	observable	variables,	
v,	and	a	vector	of	values	of	the	latent	variables,	h,	via	an	
energy	function,	E.

20

p(v,h;W ) = 1
Z
e−E (v,h;W ),Z = e−E (v ',h ';W )

v ',h '
∑

E(v,h) = − aivi
i∈visible
∑ − bjhj

j∈visible
∑ − vihjwij

i, j
∑



Generative	Pretraining

• Restricted	Boltzmann	Machine	(RBM)	(Cont’d)
• The	probability	that	the	network	assigns	to	a	visible	vector,	v,	
is	given	by	summing	over	all	possible	hidden	vectors.

• The	derivative	of	the	log	probability	of	a	training	set	with	
respect	to	a	weight	is	surprisingly	simple.	The	angle	brackets	
denote	expectations	under	the	corresponding	distribution.

p(v) = 1
Z

e−E (v,h)
h
∑

1
N

∂log p(vn )
∂wijn=1

N

∑ =< vihj >data − < vihj >model
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Generative	Pretraining

• Restricted	Boltzmann	Machine	(RBM)	(Cont’d)
• The	learning	rule	is	thus	as	follows.

• A	better	learning	procedure	is	contrastive	divergence	(CD),	
which	is	shown	below.	The	subscript	“recon”	denotes	a	step	
in	CD	when	the	states	of	visible	units	are	assigned	0	or	1	
according	to	the	current	states	of	the	hidden	units.

Δwij = ε(< vihj >data − < vihj >model )

Δwij = ε(< vihj >data − < vihj >recon )
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Generative	Pretraining

•Modeling	Real-Valued	Data
• Real-valued	data,	such	as	MFCCs,	are	more	naturally	
modeled	by	linear	variables	with	Gaussian	noise	and	the	
RBM	energy	function	can	be	modified	to	accommodate	such	
variables,	giving	a	Gaussian-Bernoulli	RBM	(GRBM).

E(v,h) = (vi − ai )
2

2σ i
2

i∈vis
∑ − bjhj

j∈hid
∑ − vi

σ i

hjwij
i, j
∑
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Generative	Pretraining

• Stacking	RBMs	to	Make	a	Deep	Belief	Network
• After	training	an	RBM	on	the	data,	the	inferred	states	of	the	
hidden	units	can	be	used	as	data	for	training	another	RBM	
that	learns	to	model	the	significant	dependencies	between	
the	hidden	units	of	the	first	RBM.
• This	can	be	repeated	as	many	times	as	desired	to	produce	
many	layers	of	nonlinear	feature	detectors	that	represent	
progressively	more	complex	statistical	structure	in	the	data.
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Generative	Pretraining

• Stacking	RBMs	to	Make	a	Deep	Belief	Network	(Cont’d)

From:		The	paper
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Generative	Pretraining

• Interfacing	a	DNN	with	an	HMM
• In	an	HMM	framework,	the	hidden	variables	denote	the	
states	of	the	phone	sequence,	and	the	“visible”	variables	
denote	the	feature	vectors.	[*]

[*]	Added	by	the	presenter

From:		Gales,	Mark,	and	Steve	Young.	"The	application	of	hidden	Markov	models	 in	speech	recognition.”
Foundations	and	trends	in	signal	processing 1.3	(2008):	195-304. 26



Generative	Pretraining

• Interfacing	a	DNN	with	an	HMM	(Cont’d)
• To	compute	a	Viterbi	alignment	or	to	run	the	forward-
backward	algorithm	within	the	HMM	framework,	we	require	
the	likelihood	p(AcousticInput|HMMstate).
• A	DNN,	however,	outputs	probabilities	of	the	form	
p(HMMstate|AcousticInput).
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Generative	Pretraining

• Interfacing	a	DNN	with	an	HMM	(Cont’d)
• The	posterior	probabilities	that	the	DNN	outputs	can	be	
converted	into	the	scaled	likelihood	by	dividing	them	by	the	
frequencies	of	the	HMM	states	in	the	forced	alignment	that	
is	used	for	fine-tuning	the	DNN.
• Forced	alignment	 is	a	procedure	used	to	generate	labels	for	
the	training	process.	[*]

[*]	Added	by	the	presenter
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Generative	Pretraining

• Interfacing	a	DNN	with	an	HMM	(Cont’d)
• All of the likelihoods produced in this way are scaled by the
same unknown factor of p(AcousticInput).
• Although this appears to have little effect on some
recognition tasks, it can be important for tasks where
training labels are highly unbalanced.
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Experiments

• Phonetic	Classification	and	Recognition	on	TIMIT
• The	TIMIT	data	set	is	a	relatively	small	data	set	which	
provides	a	simple	and	convenient	way	of	testing	new	
approaches	to	speech	recognition.
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Experiments

• Phonetic	Classification	and	Recognition	on	TIMIT	(Cont’d)

From:		The	paper
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Experiments

• Bing-Voice-Search	Speech	Recognition	Task
• This	task	used	24h	of	training	data	with	a	high	degree	of	
acoustic	variability	caused	by	noise,	music,	side-speech,	
accents,	sloppy	pronunciation,	et	al.
• The	best	DNN-HMM	acoustic	model	achieved	a	sentence	
accuracy	of	69.6%	on	the	test	set,	compared	with	63.8%	for	a	
strong,	minimum	phone	error	(MPE)-trained	GMM-HMM	
baseline.
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Experiments

• Bing-Voice-Search	Speech	Recognition	Task	(Cont’d)

From:		The	paper 34



Experiments

• Other	Large	Vocabulary	Tasks
• Switchboard	Speech	Recognition	Task	(a	corpus	containing	
over	300h	of	training	data)
• Google	Voice	Input	Speech	Recognition	Task	
• YouTube	Speech	Recognition	Task
• English	Broadcast	News	Speech	Recognition	Task
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Experiments

• Other	Large	Vocabulary	Tasks	(Cont’d)

From:		The	paper 36
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Discussion

• Convolutional	DNNs	for	Phone	Classification	and	
Recognition
• Although	convolutional	models	along	the	temporal	
dimension	achieved	good	classification	results	on	TIMIT	
corpus,	applying	them	to	phone	recognition	is	not	
straightforward.
• This	is	because	temporal	variations	in	speech	can	be	partially	
handled	by	the	dynamic	programing	procedure	in	the	HMM	
component	and	hidden	trajectory	models.
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Discussion

• Speeding	Up	DNNs	at	Recognition	Time
• The	time	that	a	DNN-HMM	system	requires	to	recognize	1s	
of	speech	can	be	reduced	from	1.6s	to	210ms,	without	
decreasing	recognition	accuracy,	by	quantizing	the	weights	
down	to	8b	using	CPU.
• Alternatively,	it	can	be	reduced	to	66ms	by	using	a	graphics	
processing	unit	(GPU).
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Discussion

• Alternative	Pretraining	Methods	for	DNNs
• It	is	possible	to	learn	a	DNN	by	starting	with	a	shallow	neural	
net	with	a	single	hidden	layer.	Once	this	net	has	been	trained	
discriminatively,	a	second	hidden	layer	is	interposed	
between	the	first	hidden	layer	and	the	softmax	output	units	
and	the	whole	network	is	again	discriminatively	trained.	This	
can	be	continued	until	the	desired	number	of	hidden	layers	
is	reached,	after	which	full	backpropagation	fine-tuning	is	
applied.
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Discussion

• Alternative	Pretraining	Methods	for	DNNs	(Cont’d)
• Purely	discriminative	training	of	the	whole	DNN	from	
random	initial	weights	works	well,	too.
• Various	types	of	autoencoder	with	one	hidden	layer	can	also	
be	used	in	the layer-by-layer	generative	pretraining	process.
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Discussion

• Alternative	Fine-Tuning	Methods	for	DNNs
•Most	DBN-DNN	acoustic	models	are	fine-tuned	by	applying	
stochastic	gradient	descent	with	momentum	to	small	
minibatches	of	training	cases.
•More	sophisticated	optimization	methods	can	be	used,	but	it	
is	not	clear	that	the	more	sophisticated	methods	are	
worthwhile	since	the	fine-tuning	process	is	typically	stopped	
early	to	prevent	overfitting.
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Discussion

• Using	DBN-DNNs	to	Provide	Input	Features	for	GMM-HMM	
Systems
• This	class	of	methods	use	neural	networks	to	provide	the	
feature	vectors	for	the	training	process	of		the	GMM	in	a	
GMM-HMM	system.
• The	most	common	approach	is	to	train	a	randomly	initialized	
neural	net	with	a	narrow	bottleneck	middle	layer	and	to	use	
the	activations	of	the	bottleneck	hidden	units	as	features.
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Discussion

• Using	DNNs	to	Estimate	Articulatory	Features	for	Detection-
Based	Speech	Recognition
• DBN-DNNs	are	effective	for	detecting	subphonetic	speech	
attributes	(also	known	as	phonological	or	articulatory	
features).
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Discussion

• Summary
•Most	of	the	gain	comes	from	using	DNNs	to	exploit	
information	in	neighboring	frames	and	from	modeling	tied	
context-dependent	states.
• There	is	no	reason	to	believe	that	the	optimal	types	of	
hidden	units	or	the	optimal	network	architectures	are	used,	
and	it	is	highly	likely	that	both	the	pretraining	and	fine-
tuning	algorithms	can	be	modified	to	reduce	the	amount	of	
overfitting	and	the	amount	of	computation.
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Introduction

• Background
• Although	automatic	speech	recognition	(ASR)	systems	have	
become	fairly	powerful,	the	inherent	variability	can	still	pose	
challenges.
• Typically,	ASR	systems	that	work	well	in	clean	conditions	
suffer	from	a	drastic	loss	of	performance	in	the	presence	of	
noise.
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Introduction

• Feature-Based	Methods
• This	class	of	methods	focus	on	feature	extraction	or	feature	
normalization.
• Feature-based	techniques	have	the	potential	to	generalize	
well,	but	do	not	always	produce	the	best	results.
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Introduction

• Two	Groups	of	Feature-Based	Methods
•When	stereo	[*] data is	unavailable,	prior	knowledge	about	
speech	and/or	noise	is	used,	such	as	spectral	reconstruction	
based	missing	feature	methods,	direct	masking	methods	and	
feature	enhancement	methods.
•When	stereo	data	is	available,	feature	mapping	methods	and	
recurrent	neural	networks	have	been	used.

[*]	By	stereo	we	mean	noisy	and	the	corresponding	 clean	signals.
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Introduction

•Model-Based	Methods
• The	ASR	model	parameters	are	adapted	to	match	the	
distribution	of	noisy	or	enhanced	features.
•Model-based	methods	work	well	when	the	underlying	
assumptions	are	met,	but	typically	involve	significant	
computational	overhead.
• The	best	performances	are	usually	obtained	by	combining	
feature-based	and	model-based	methods.
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Introduction

• Supervised	Classification	Based	Speech	Separation
• Stereo	training	data	is	also	used	by	supervised	classification	
based	speech	separation	algorithms.
• Such	algorithms	typically	estimate	the	ideal	binary	mask	
(IBM)-a	binary	mask	defined	in	the	time-frequency	(T-F)	
domain	that	identifies	speech	dominant	and	noise	dominant	
T-F	units.
• The	above	method	can	be	extended	to	ideal	ratio	mask	(IRM),	
which represents	the	ratio	of	speech	to	mixture energy.

54



Content

• Introduction
• System	Description
• Evaluation	Results
• Discussion

55



System	Description

• Block	Diagram	of	the	Proposed	System

From:		The	paper
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System	Description

• Addressing	Additive	Noise	and	Convolutional	Distortion
• The	additive	noise	and	the	convolutional	distortion	are	dealt	
with	in	two	separate	stages:	Noise	removal	followed	by	
channel	compensation.	
• Noise	is	removed	via	T-F	masking	using	the	IRM.	To	
compensate	for	channel	mismatch	and	the	errors	introduced	
by	masking,	we	learn	a	non-linear	mapping	function	that	
undoes	these	distortions.

57



System	Description

• Time-Frequency	Masking
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Here	the	authors	perform	T-F	masking	in	the	mel-frequency	
domain,	unlike	some	of	the	other	systems	that	operate	in	the	
gammatone	feature	domain.
• To	obtain	the	mel-spectrogram	of	a	signal,	it	is	first	pre-
emphasized	and	transformed	to	the	linear	frequency	domain	
using	a	320	channel	fast	Fourier	transform	(FFT).	A	20msec	
Hamming	window	is	used. The	161-dimensional	spectrogram	
is	then	converted	to	a	26-channel	mel-spectrogram.
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System	Description

• Time-Frequency	Masking	(Cont’d)
• The	authors	use	DNNs	to	estimate	the	IRM	as	DNNs	show	
good	performance	and	training	using	stochastic	gradient	
descent	scales	well	compared	to	other	nonlinear	
discriminative	classifiers.
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Target	Signal
• The	ideal	ratio	mask	is	defined	as	the	ratio	of	the	clean	signal	
energy	to	the	mixture	energy	at	each	time-frequency	unit.
• The	mathematical	expression	is	shown	below.

IRM (t, f ) = 10(SNR(t , f )/10)

10(SNR(t , f )/10) +1
SNR(t, f ) = 10 log10 (X(t, f ) / N(t, f ))
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Target	Signal
• Rather	than	estimating	IRM	directly,	the	authors	estimate	a	
transformed	version	of	the	SNR.
• The	mathematical	expression	of	the	sigmoidal	
transformation	is	shown	below.

d(t, f ) = 1
1+ exp(−α (SNR(t, f )− β ))
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Target	Signal
• During	testing,	the	values	output	from	the	DNN	are	mapped	
back	to	their	corresponding	IRM	values.
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Features
• Feature	extraction	is	performed	both	at	the	fullband	and	the	
subband	level.
• The	combination	of	features,	31	dimensional	MFCCs,	13	
dimensional	FASTA	filtered	PLPs	and	15	dimensional	
amplitude	modulation	spectrogram	(AMS)	features,	are	used.	
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Features
• The	fullband	features	are	derived	by	splicing	together	
fullband	MFCCs	and	RASTA-PLPs,	along	with	their	delta	and	
acceleration	components,	and	subband	AMS	features.
• The	subband	features	are	derived	by	splicing	together	
subband	MFCCs,	RASTA-PLPs,	and	AMS	features.	Some	
auxiliary	components	are	also	added.
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Supervised	Learning
• IRM	estimation	is	performed	in	two	stages.	In	the	first	stage,	
multiple	DNNs	are	trained	using	fullband	and	subband	
features.	The	final	estimate	is	obtained	using	an	MLP	that	
combines	the	output	of	the	fullband	and	the	subband	DNNs.
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System	Description

• Time-Frequency	Masking	(Cont’d)
• Supervised	Learning
• The	fullband	DNNs	would	be	cognizant	of	the	overall	spectral	
shape	of	the	IRM	and	the	information	conveyed	by	the	
fullband	features,	whereas	the	subband	DNNs	are	expected	
to	be	more	robust	to	noise	occurring	at	frequencies	outside	
their	passband.
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System	Description

• Time-Frequency	Masking	(Cont’d)

From:		The	paper 68



System	Description

• Feature	Mapping
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System	Description

• Feature	Mapping	(Cont’d)
• Even	after	T-F	masking,	channel	mismatch	can	still	
significantly	impact	performance.
• This	happens	for	two	reasons.	Firstly,	the	algorithm	learns	to	
estimate	the	ratio	mask	using	mixtures	of	speech	and	noise	
recorded	using	a	single	microphone.	Secondly,	because	
channel	mismatch	is	convolutional,	speech	and	noise,	which	
now	includes	both	background	noise	and	convolutive	noise,	
are	clearly	not	uncorrelated.
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System	Description

• Feature	Mapping	(Cont’d)
• The	goal	of	feature	mapping	in	this	work	is	to	learn	spectro-
temporal	correlations	that	exist	in	speech	to	undo	the	
distortions	introduced	by	unseen	microphones	and	the	first	
stage	of	the	algorithm.
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System	Description

• Feature	Mapping	(Cont’d)
• Target	Signal
• The	target	is	the	clean	log-mel	spectrogram	(LMS).	The	
“clean”	LMS	here	corresponds	to	those	obtained	from	the	
clean	signals	recorded	using	a	single	microphone	in	a	single	
filter	setting.
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System	Description

• Feature	Mapping	(Cont’d)
• Target	Signal
• Instead	of	using	the	LMS	directly	as	the	target,	the	authors	
apply	a	linear	transform	to	limit	the	target	values	to	the	
range	[0,	1]	to	use	the	sigmoidal	transfer	function	for	the	
output	layer	of	the	DNN.
• The	mathematical	expression	is	as	follows.

Xd (t, f ) =
ln(X(t, f ))−min(ln(X(⋅, f )))

max(ln(X(⋅, f )))−min(ln(X(⋅, f )))
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System	Description

• Feature	Mapping	(Cont’d)
• Target	Signal
• During	testing,	the	output	of	the	DNN	is	mapped	back	to	the	
dynamic	range	of	the	utterances	in	training	set.
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System	Description

• Feature	Mapping	(Cont’d)
• Features
• The	authors	use	both	the	noisy	and	the	masked	LMS.

• Supervised	Learning
• Unlike	the	DNNs	used	for	IRM	estimation,	the	hidden	layers	
of	the	DNN	for	this	task	use	rectified	linear	units	(ReLUs).	In	
addition,	the	output	layer	uses	sigmoid	activations.
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System	Description

• Feature	Mapping	(Cont’d)

From:		The	paper
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System	Description

• Acoustic	Modeling
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System	Description

• Acoustic	Modeling	(Cont’d)
• The	acoustic	models	are	trained	using	the	Aurora-4	dataset.
• Aurora-4	is	a	5000-word	closed	vocabulary	recognition	task	
based	on	the	Wall	Street	Journal	database.	The	corpus	has	
two	training	sets,	clean	and	multi-condition,	both	with	7138	
utterances.
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System	Description

• Acoustic	Modeling	(Cont’d)
• Gaussian	Mixture	Models
• The	HMMs	and	the	GMMs	are	initially	trained	using	the	
clean	training	set.	The	clean	models	are	then	used	to	
initialize	the	multi-condition	models;	both	clean	and	multi-
condition	models	have	the	same	structure	and	differ	only	in	
transition	and	observation	probability	densities.

79



System	Description

• Acoustic	Modeling	(Cont’d)
• Deep	Neural	Networks
• The	authors	first	align	the	clean	training	set	to	obtain	senone	
labels	at	each	time-frame	for	all	utterances	in	the	training	
set.	DNNs	are	then	trained	to	predict	the	posterior	
probability	of	senones	using	either	clean	features	or	features	
extracted	from	the	multi-condition	set.
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System	Description

• Diagonal	Feature	Discriminant	Linear	Regression
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System	Description

• Diagonal	Feature	Discriminant	Linear	Regression	(Cont’d)
• dFDLR	is	a	semi-supervised	feature	adaptation	technique.
• The	motivation	for	developing	dFDLR	is	to	address	the	
problem	of	generalization	to	unseen	microphone	conditions	
in	our	dataset,	which	is	where	the	DNN-HMM	systems	
perform	the	worst.
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System	Description

• Diagonal	Feature	Discriminant	Linear	Regression	(Cont’d)
• To	apply	dFDLR,	we	first	obtain	an	initial	senone-level	
labeling	for	our	test	utterances	using	the	unadapted	models.	
Features	are	then	transformed	to	minimize	the	cross-entropy	
error	in	predicting	these	labels.
• The	mathematical	expressions	are	as	follow.

Ôt ( f ) = wf iOt ( f )+ bf

min E(st ,Dout (Ôt−5...Ôt+5 ))t∑
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System	Description

• Diagonal	Feature	Discriminant	Linear	Regression	(Cont’d)
• The	parameters	can	easily	be	learned	within	the	DNN	
framework	by	adding	a	layer	between	the	input	layer	and	
the	first	hidden	layer	of	the	original	DNN. After	initialization,	
the	standard	backpropagation	algorithm	is	run	for	10	epochs	
to	learn	the	parameters	of	the	dFDLR	model. During	
backpropagation,	weights	of	the	original	hidden	layers	are	
kept	unchanged	and	only	the	parameters	in	the	dFDLR	are	
updated.
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Content

• Introduction
• System	Description
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Evaluation	Results
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Discussion

• Several	interesting	observations	can	be	made	from	the	
results	presented	in	the	previous	section.
• Firstly,	the	results	clearly	show	that	the	speech	separation	
front-end	is	doing	a	good	job	at	removing	noise	and	handling	
channel	mismatch.
• Secondly,	with	no	channel	mismatch,	T-F	masking	alone	
worked	well	in	removing	noise.
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Discussion

• Finally,	directly	performing	feature	mapping	from	noisy	
features	to	clean	features	performs	reasonably,	but	it	does	
not	perform	as	well	as	the	proposed	front-end.
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Thank You！
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